SCT3604 Datasheet

Broadband High Efficient RF Power Amplifier

V. 1.0 Nov, 2011

CONTENTS

1.	PRODUCT INTRODUCTION	3
2.	FEATURES	3
3.	TYPICAL APPLICATIONS	3
4.	ABSOLUTE MAXIMUM RATINGS	4
5.	ELECTRICAL CHARACTERISTICS	4
6.	BLOCK DIAGRAM	6
7.	PIN DESCRIPTION	7
8.	APPLICATION INFORMATION	8
9.	TEST SCHEMATIC AND LAYOUT	9
10.	MAIN CHARACTERISTICS	10
11.	PACKAGING INFORMATION	11
12.	DISCLAIMERS	12

1. PRODUCT INTRODUCTION

SCT3604 is a high-gain and high-efficiency power amplifier chip offering high performance and wideband in CW or FM signal amplifications, especially for VHF, UHF Walkie-Talkie, RFID and other FM, FSK, ASK applications in a frequency range from 130MHz to 1GHz. The chip is fabricated on silicon process. Its input and output matches are implemented on printed circuit board and can be easily adjusted to obtain optimum power and efficiency. The chip is assembled in a low thermal resistance 5x5 mm² QFN28 package.

2. FEATURES

- Single supply voltage from 2.5 to 6 V
- Wide operation frequency range from 130 MHz to 1 GHz
- High power gain up to 38 dB
- High output power up to 34 dBm at 4.2 V
- High power added efficiency of 55%
- 5x5 mm² plastic QFN28 in 0.5mm pitch

3. TYPICAL APPLICATIONS

- Analog walkie-talkies, like Family Radio Service (FRS), General Mobile Radio Service (GMRS)
- Digital FDMA two way radio and trunking systems (DPMR, P25, DCR, NXDN, NDR)
- Digital TDMA two way radio and trunking systems (DMR, P25, PDT)
- Wireless data communication (FSK, AFSK, OOK, GFSK, MSK)
- RFID reader/writers
- Wireless sensor network and AdHoc application
- Remote control and sensing systems
- Commercial and consumer electronics
- Portable and battery powered equipments

4. ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings given in table must not be violated under any circumstances. Stress exceeding one or more of the limiting values may cause permanent damage to the device.

Parameter	Specification		Unit	Condition	
	Min	Тур.	Max		
Supply voltage	-0.5		12.0	V	
Voltage per pin	-0.5		12.0	V	
Current per pin	-0.5		0.5	А	
RF Power per pin			30	dBm	
Output load VSWR			20:1		
ESD protection voltage	1.0			kV	
Thermal resistance		10		°C /W	
Lead temperature			260	°C	
Storage temperature	-50		150	°C	

5. ELECTRICAL CHARACTERISTICS

Parameter	Specification		Unit	Condition	
	Min	Тур.	Max		
Supply voltage (VDD)	2.5		6	V	In AC condition
Bias control voltage	0.0		2.0	V	
DC supply current		1.2		А	<pre>@Pout = 34 dBm @VDD = 4.2V</pre>
Operation temperature	-40		85	°C	
Operating frequency range	130		1000	MHz	
Maximum output power Pmax		34		dBm	$\begin{array}{l} @Pin = -5 \ dBm \\ @VDD = 4.2 \ V \end{array}$

4

Power added efficiency (PAE)	55	60	%	 @ Pout = 2.5W @ VDD = 4.2 V @ Freq = 150MHz
Input power for Pmax	-5		dBm	
ACPR		-70	dBc	@1.0kHz narrow band FM signal
Forward isolation	60		dB	
Second harmonic	-30		dBc	@ Pmax
Third harmonic	-45		dBc	@ Pmax
Fourth harmonic	-60		dBc	@ Pmax
Other non-harmonic spurious		-60	dBc	@ Pmax
Input VSWR	2.0:			External matching to
	1.0			50Ω source
Output load VSWR	4.0:			External matching to
1	1.0			50Ω load

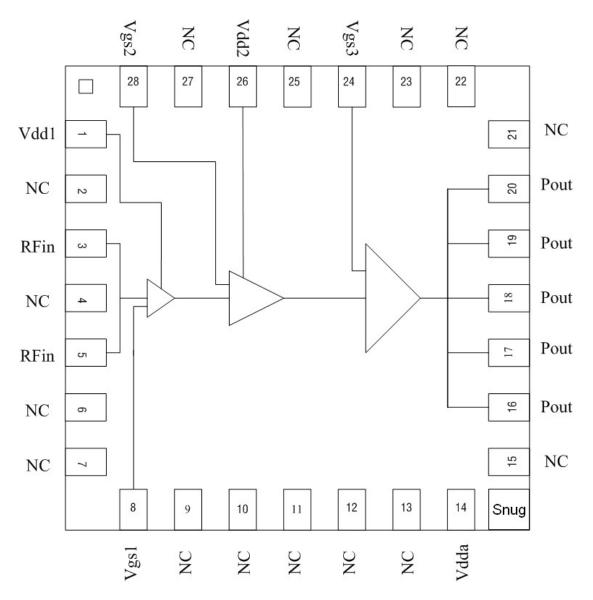


Fig.1. Block Diagram (5x5 mm² QFN28)

7. PIN DESCRIPTION

Pin No.	Pin Name	Pin Type	Description			
1	Vdd1	Power supply	Power supply for first stage			
2	NC	-	No connection			
3	RFin	RF input	RF signal input and off chip DC blocking capacitor is required			
4	NC	-	No connection			
5	RFin	RF input	Same as Pin 2			
6	NC	-	No connection			
7	NC	-	Grounding			
8	Vgs1	Analog input	Bias input for first stage, (Ref. to application schematic for details)			
9	NC	-	No connection			
10	NC	-	No connection			
11	NC	-	No connection			
12	NC	-	No connection			
13	NC	-	No connection			
14	Vdda	Power supply	Power supply for analogy circuits			
15	NC		No connection			
16	RFout		Power supply and RF output for the			
17	RFout		output stage. External matching is required to get maximum output power and PAE. (Ref. to application schematic for details.)			
18	RFout	- RF power				
19	RFout	– output				
20	RFout					
21	NC	-	No connection			
22	NC	-	No connection			
23	NC	-	No connection			
24	Vgs3	Analog input	Bias input for output stage, (Ref. to application schematic for details.)			
25	NC -		No connection			
26	Vdd2	Power supply	Power supply for second stage.			
27	NC	-	No connection			
28	Vgs2	Analog input	Bias input for second stage. (Ref. to application schematic for details.)			
Snug	GND	Ground	Grounding and thermal radiation			

Pin out and their functions in the table below are defined for the chip SCT3604.

8. APPLICATION INFORMATION

SCT3604 is a three-stage power amplifier device with high gain at full output power. An input power of -5 dBm is required to achieve its fully saturate output power. The chip requires only a single positive power supply. The amplifier's main ground is the big and exposed pad in the middle of the package at the bottom (the snug as indicated on the chip symbol), and the pad should be connected to PCB ground plate with 20-25 vias for good thermal conductivity and grounding.

A special care must be taken care for the multi via layout of the PCB. The 10 mil hole size is recommended and the via must be from top layer to bottom layer. At the same time, an excellent thermal radiator or excellent thermal connection between the chip and the alloy frame of the system.

In normal application for signal with constant envelope, the first and second stages of the amplifier are in class-A and class-AB mode, respectively. The third stage of the amplifier operates in class-C mode. Its DC current will be increased with RF input signal. The optimum load for maximum output power and efficiency is approximately 5 Ω . An external output matching network is required to match this impedance to 50 Ω load, referring to the test and application schematic for more details. The chip inputs (pin 3 and 4) are DC biased, thus a blocking capacitor must be inserted in series between signal source and the chip inputs.

Vdd1 and Vdd2 provide DC power supply to the first and second stages, respectively. RF chock inductor is need for each pin. Vgs1, Vgs2 and Vgs3 should be set to different bias voltages for maximum output power and efficiency. Even though the max DC voltage to the chip power supply is 12 V, in AC condition, do not provide over 6 V power supply to the chip.

9. TEST AND APPLICATION SCHEMATIC

The typical test and application circuit for 400MHz is shown in Fig.2 for SCT3604

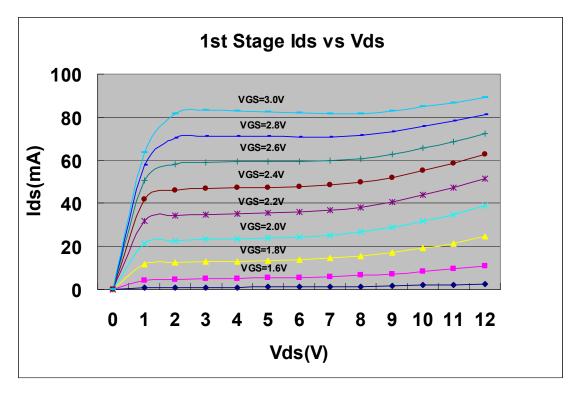
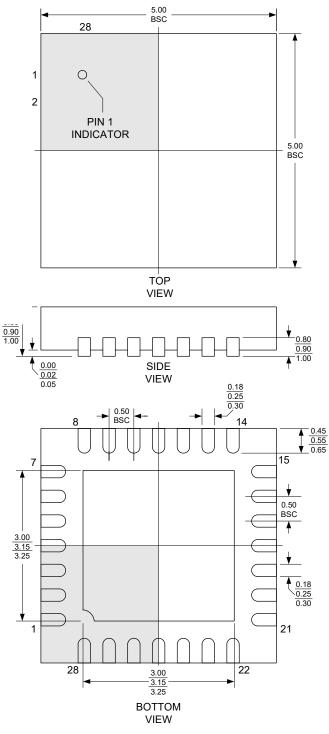




Fig.2. Test and application circuit

11. PACKAGING INFORMATION

Dimensions shown in millimeters Fig.4: 5x5mm QFN 28-pin package

12. DISCLAIMERS

- Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Sicomm customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Sicomm for any damages resulting from such applications.
- Right to make changes Sicomm reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Sicomm assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or masks work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.